
Opening the Ecosystem Flood Gates:
Architecture Challenges of Opening Interfaces

within a Product Portfolio

Slinger Jansen

Information and Computing Sciences, Utrecht University, The Netherlands
slinger.jansen@uu.nl

Abstract. Technology firms are increasingly opening up their products
to develop an active ecosystem of developing partners around it. Both
opening up products and organizing a developer ecosystem around an or-
ganization are non-trivial. In this paper we provide a case study of a lead-
ing communications technology firm that opened up and platformized 11
product lines. First, we identify and describe four architecture patterns
that are applied multiple times across these product lines. Also, the soft-
ware ecosystems initiative is centralized in one central department, which
has created a central knowledge hub for the creation of a software ecosys-
tem. We highlight the guidelines collected by the central department, to
assist technology firms in the platformization process and support them
in their own software ecosystem creation efforts.

Keywords: Software platforms, Software Ecosystems, APIs, Case Study,
Extendible Product Lines, Extension Patterns

1 Introduction

The creation of partner and developer ecosystems around IT companies is gain-
ing interest rapidly. IT companies observe the successes that can be achieved
with app stores, hackathons, open source developer communities, and other ini-
tiatives that drive software ecosystems. The creation of an ecosystem around a
traditional IT product, however, is far from trivial and IT companies are looking
for approaches to open up their products and have them adopted by communi-
ties of active developers who wish to co-innovate and share in the wealth created
by the products and its auxiliary materials.

IT companies aim to create active developer communities and ecosystems
around their products. We define developer ecosystems as a set of software de-
velopers functioning as a unit and interacting with a shared market for soft-
ware artefacts. We ask the reader to observe the parallels between the definition
on developer ecosystems and the definition on software ecosystems: a software
ecosystem is a set of actors functioning as a unit and interacting with a shared
market for software and services, together with the relationships among them [7].
We also state that the term (open source) developer ecosystem is a synonym for
(open source) developer community [2].



2 Slinger Jansen

The research domain of software ecosystems is still in its infancy [10]. Re-
searchers and IT companies are curious about new theories, methods, and tech-
niques for the initiation, development, and grooming of software ecosystems.
As such, there is an urgent need for examples and case studies that exemplify
excellent practices, for theory formation and for teaching practitioners lessons.

Large IT companies are currently launching and running developer ecosys-
tems. The challenges for a large IT company compared to a web start-up, how-
ever, are much larger, as large IT firms typically have many products organized
in product lines, whereas a small web start-up will only have one or two domain
APIs that need to be opened up. From this crucial difference, many new chal-
lenges arise. First, a small web start-up will start with a blank slate, whereas
a large IT company has different product lines that may already be involved in
supporting a software ecosystem of its own, with varying success and stages of
maturity. Furthermore, due to the large range of different technologies that are
adopted by a large IT firm over time, different entry points are required for each
product, different types of participants are active in the ecosystem, and different
business models need to be applied over those different products.

In this paper a case study is presented of an IT firm with a large product
portfolio that with one initiative is hoping to open up ecosystems around a large
set of its products. The lessons provided stem mostly from the software archi-
tecture domain: we illustrate how a product portfolio can be opened up using
a generic platformization approach. Enabling an ecosystem requires a level of
openness for a platform: without any extension mechanisms for third parties it
is practically impossible for a software ecosystem to exist [1, 6]. The openness
level of a software platform is also a powerful tool for platform owners, as their
choices determine the flexibility and extendibility of the platform, and subse-
quently of the ecosystem. A platform that is too open runs the risk of giving
away its competitive uniqueness for free, whereas a platform that is too closed
risks not being interesting enough for platform extenders in the ecosystem. The
platformization approach is explained using four architectural extension patterns
that were applied 21 times across 21 products.

We continue this paper with a description of the case study and the use of
grounded theory for explorative research in Section 2. In Section 3 the case of
NetComp is described. A detailed description is provided of the implementation
of the software ecosystems initiative at NetComp: the managerial approach, the
technical approach, and the developer ecosystem approach are discussed. In Sec-
tion 4, four product extension patterns are described and details are provided
of the historical background of the technologies provided at NetComp and on
how the patterns were influenced by technological and strategical advancement
of NetComp. To illustrate the observed patterns, NetComp’s Telepresence prod-
uct line is used to illustrate the observed patterns in Section 5. In Sections 6
and 7 we analyze the efforts at NetComp and identify the challenges of under-
taking such an initiative: both from the architecture and managerial perspective.
Finally, we summarize our findings in Section 8 and hint towards a catalog of



Opening Interfaces Within a Product Portfolio 3

extensibility patterns that describes the different methods that can be used to
extend a software product into a platform.

2 Case Study Method

Context: The context of the case study is NetComp (company and depart-
ment names anonymized), a relatively young international firm that produces
hardware and software products for enterprise and carrier communications. The
firm has around 200,000 employees and is growing rapidly. The company has a
worldwide presence.

Case study type: The case study can be seen as a participant case: the first
author has worked alongside the FloodGate Department, a department that is
burdened with the ecosystem initiative of the company. The main responsibility
of the FloodGate Department is to expose current products to the developer
ecosystem of NetComp and to build out the developer ecosystem. Please note
that alongside the FloodGate Department are more commercial departments
oriented around partnering, business models, etc. The FloodGate Department
mostly deals with technical issues, development documentation, and the devel-
oper ecosystem. Please also note that the researcher was not involved in any of
the decisions described in this paper, as his work focused more on the growth
and grooming of the developer ecosystem.

Unit of Analysis: The units of analysis for this study are the architectures
and extension points for each of the products in the product lines. Furthermore,
the FloodGate Department and its responsibilities have been a unit of analysis
as well.

Method: The data about the products and architectures has been collected
through interactions with the FloodGate Department and in some cases through
direct interaction with the product units. Also, several interviews with extending
partners have taken place. The case study has been exploratory: multiple topics
for study have been extracted. The current report (i.e., this paper) is the first
in a set of reports. The methods followed were document study, interviews, in-
teractions through the in-company chat system, and frequent e-mail interaction.
The communication through digital channels helped solve translation issues. In
all of the interviews different translators were present. The interviews have been
recorded. Through inductive reasoning, topics have been extracted, highlighted,
and grouped, using a digital folder system. For the study at hand, document
study has been the main source of the material that is presented.

3 Case Report: Studying 11 Product Lines in NetComp

The starting point for this research has been the FloodGate Department. The
FloodGate Department is a horizontal department in NetComp that is respon-
sible for the ecosystem initiative of NetComp. The FloodGate Department was
founded to create one unit within the company that is dedicated towards enabling
partners to extend the most successful products of NetComp. As NetComp has



4 Slinger Jansen

a huge product portfolio, the unification of these efforts results in a knowledge
hub on the creation of extendible interfaces for software and hardware products.
The end goal of the FloodGate Department is to create welcoming and open
software ecosystems for partners to participate in.

The FloodGate Department has been built upon several loose initiatives
in the product lines to make their products extendible. The product lines for
unified communications, for instance, had been creating extendible products and
platforms for several years already. Currently, the FloodGate Department opens
up capabilities in 11 product lines, in more than 20 products. These product lines
have amassed between tens and hundreds of ISV and implementation partners
(i.e., extension builders) that are dependent on NetComp products for their
revenues.

As the FloodGate Department has executive backing, many product units
have found a strategic partner in the FloodGate department: their resources are
not influenced by one product’s success and they have the knowledge on how
to open up any kind of product. Some product lines were reluctant to support
the FloodGate initiative at first, but as time progresses, they too see that the
FloodGate Department plays an important and strategic role in enabling product
units to build their own partner network.

The FloodGate Components consist of the different software components that
are managed by the FloodGate Department. These components are FloodGate
servers, which are typically installed alongside NetComp products, extension
libraries (JARs and other SDKs), and controls (like OCX controls). Another
important concept in the case study are the FloodGate Labs, where partners can
remotely test their software against NetComp hardware. These labs are located
in one office building and contain hardware test set-ups that can be worked with
in a timesharing manner. The FloodGate Labs are described in Section 3.2.

3.1 Joining the FloodGate Initiative

The FloodGate Department supports eight programming platforms (.Net, C(++),
Java(script), Ruby, Delphi, JSP, PHP, and Python) and six operating systems
(iPhone, Android, Linux, OpenSuse, Windows, and Mac OS X). This variation
has mostly been evolutionary: as new product lines join the FloodGate initiative
they are bringing in new domain specific technologies. It is important to note
that in many cases the FloodGate Department does little more than provide
documentation and an open interface for the products. The responsibility for
the product and its interfaces remains with the product departments, although
in quite some cases the FloodGate Department has inherited the software de-
velopment of complex extension servers (more on this in Section 4).

NetComp supplies funding to both the product team and the FloodGate
Department for each new product that starts creating FloodGate Components.
There is no formal procedure for joining the FloodGate initiative, but the pro-
cess is based on common practices. The process consists of the following steps:
(1) Assess suitability of the product, (2) design new architecture for the prod-
uct to enable an open extendible platform, (3) publish the products’ FloodGate



Opening Interfaces Within a Product Portfolio 5

Components (typically an SDK). In the case of some strategic products, the
FloodGate Department has initiated the collaboration themselves. The organi-
zation does currently not evaluate the financial results of opening up parts of
products. The ecosystem initiative is strategic and is assumed to be useful for
the whole firm. As it is hard to predict whether some of the products are going
to be successful as platforms, NetComp mostly works on feedback from partners
and channel managers.

In a typical case, the FloodGate Department is approached by a product
unit first. They will explain their needs for extension, the (potential) size of
the partner network, and the efforts they think are required to open up their
products and platforms. The FloodGate Department assigns a project leader
to the product unit, who from then on is responsible for all contact with the
product unit. The project is started and an inventory is made of the efforts
required to open up the products. Ideally, the FloodGate Department deploys
their FloodGate server software next to the products and platforms and uses
this server as an abstraction layer between the product unit’s products and the
extensions built by partners. The FloodGate Department and the product unit
develop the capabilities in lock step: first the product is opened up further,
and then the FloodGate components (more on these later) are evolved. When
the software is considered ready for publication documentation is created on the
FloodGate ecosystem hub, a web site where partners are gathered and supported.

As the platform is adopted by partners new responsibilities are introduced.
The FloodGate Department remains responsible for the maintenance and de-
velopment of the extension software, its co-evolution with the products, and
partner support. The product units remain responsible for the development and
maintenance of the products and the support of partners from a commercial
perspective.

The commercial departments of specific products are responsible for man-
aging partners. The FloodGate Department is responsible for solving technical
problems that partners face. Unfortunately, there is little to no sharing contact
data between the business departments and the FloodGate Department, which
leads to two separate databases with partners, i.e., those that collect incentives
from the business departments versus those that ask questions to the Flood-
Gate Department. Both the business departments and FloodGate Department
are calling for a unified partner management system. The responsibilities are
mapped out in Table 1.

The FloodGate Department is responsible for receiving extensibility and
product requests from partners. The project leaders in the FloodGate Depart-
ment forward the product related questions to the product units and implement
the extensibility requirements where possible. Product management is in the
hands of the product units. The FloodGate Department is responsible for open-
ing up the architecture, but the interfaces have typically been prepared by the
product departments. Interestingly, some of the product units are no longer in-
dependently planning new features for their products, but involve a mixed team
with members from the FloodGate Department.



6 Slinger Jansen

Table 1. Responsibilities divided between product units versus the FloodGate Dept.

FloodGate Department Product Departments
Product management
Release planning One week after each product re-

lease.
The product departments release
their versions independently.

Requirements engineering From the product departments and
partners.

From partners and end-customers.

Extendibility requirements From the product departments. From partners.
Software delivery Independently delivers compo-

nents.
Independently delivers products.

Development and Support
Architecture development Gives guidelines in regards to inter-

faces required.
Develop their own product based
architecture.

Error messages From the FloodGate Components. From the internal components.
Documentation About FloodGate Components. About the product.
Support To the product departments and to

partners.
To the partners (product related)
and customers.

FloodGate Labs Completely responsible. Helps FloodGate Dept. setting up
the products in the labs.

Business aspects
Partner management Developer community. Partner community.
Financial responsibility Centrally coordinated. Revenue based.

When a new version of a product is released, the FloodGate Department typ-
ically responds within one week with an update to the extensible components as
well. As the FloodGate Department is kept up to date of a product’s progress
and release schedule, they are developing the extensibility components parallel
to the product development. In many cases they FloodGate Department can
release on the same day as the product unit does. The FloodGate Department
is somewhat hard to manage because of this: as the product release schedules
are not coordinated, the FloodGate Department has different work loads at dif-
ferent times. The FloodGate Department and the product department organize
meetings between once and twice per month to coordinate new releases, new
development efforts, and ecosystem challenges.

3.2 FloodGate Labs

The ecosystem enablers that may be beneficial for one product are not beneficial
for another. For example, some of the products in NetComp, such as IP Cameras
and routing equipment, require access to test hardware. NetComp prides itself
for providing access to a large laboratory in the cloud, that can be approached
by partners at specific times (effectively timesharing the lab). Partners positively
evaluate this practice, as they do not need to procure expensive test setups for
their own development. NetComp leverages its own IP camera system to show
that the hardware controls being called from the lab actually have the desired
effect by pointing IP cameras at the hardware, such as servers, switches, and
ironically, IP cameras. Please see figure 1 for an example of a movable IP camera
that is used to monitor servers in the FloodGate Labs.

For some of the software intensive systems this is not beneficial, however,
as it can be less cumbersome to just buy the required hardware or create a
virtualized test setup. Partners complain that many of the platforms in the



Opening Interfaces Within a Product Portfolio 7

Fig. 1. An IP camera is pointed at a piece of hardware to show API users that the
device status changed according to their calls. The IP camera can be moved to look at
other adjacent devices as well with simple controls.

organization can be tested in a virtualized environment or through simulators
as well. NetComp is currently building such simulators, to make partners less
dependent on FloodGate Labs.

4 Product Extension Patterns

NetComp has always specialized in manufacturing hardware devices, such as
routers, switches, and IP cameras. As time progressed and the organization
became more mature, multiple abstraction layers have been required over the
devices. This can be found in, for instance, the telepresence system that has
an advanced management interface that can plan telepresence meetings across
a network of telepresence devices, or the abstract datacenter management layer
that can control several storage servers simultaneously. In NetComp four levels of
abstraction have been observed. The levels of abstraction are found in Figure 2.

– Server Level - NetComp has traditionally manufactured servers. The soft-
ware interfaces to those servers were always of concern, but as in the early
years many of the implementation projects were in fact done by NetComp,
these interfaces were usually in poor shape in terms of software quality.
As the market for software has become more commoditized, however, these
interfaces to servers have become better managed, higher quality, and acces-
sible by third parties through APIs.

– Server Management Level - As NetComp grew, there was an increasing
need for management infrastructures that controlled large numbers of device
servers, such as IP cameras, routers, and storage servers. These management
infrastructures typically use existing protocols for controlling devices, such as
the Simple Network Management Protocol, and can interface with hardware
from other suppliers as well.



8 Slinger Jansen

– Federated Servers Level - As NetComp started orienting towards more
advanced markets and specifically targeting larger enterprises, new require-
ments were introduced for telepresence, single sign-on, and device manage-
ment. Whereas before it could focus on building the best IP camera, it now
has to focus on providing “the best” federated infrastructures for heteroge-
neous hardware, both from NetComp and third party hardware providers.
NetComp currently provides several such federated infrastructures, for in-
stance for unified communications, equipment dedicated to communication
in a specific communication bandwidth, and IP cameras. These federated
infrastructures typically consist of several software solutions on different
servers, but are conceptually unified into one coordinating server.

– Advanced UIs Level - At the highest level of abstraction, NetComp en-
ables mobile and other advanced interfaces to the federated infrastructures.
This, for instance, enables the creation of NetComp applications for Smart
Cities, such as a mobile app that can control a set of federated IP cameras
or desktop apps that can control alarms across server federations.

Server A.1

FloodGate API

FloodGate API

Coordinating Server

Server A.2

FloodGate API

Mobile App

FloodGate SDK

Pattern A

Pattern B

Pattern D

FloodGate API
Federated 

Coordination Server
Pattern C

FloodGate API

Coordinating Server

Server B.1

FloodGate APIServer 
Level

Servers 
Management 
Level

Federated 
Servers Level

Advanced UIs 
Level

Fig. 2. Three extension patterns are found multiple times in the products of NetComp.
The patterns are applied multiple times across different products and product lines.

Figure 2 shows more than just the levels of product abstraction that Net-
Comp offers. It also models the four different extension patterns that are em-
ployed by the FloodGate Department to open up NetComp’s products. In the
following overview, each of the extension patterns is described. The overview is
summarized in Table 2.



Opening Interfaces Within a Product Portfolio 9

– Extension Pattern A: Simple Server Extension - To provide third
parties with opportunities for controlling and interacting with NetComp
hardware, many of the hardware products can be extended with a simple
server. Several different mechanisms are applied to open up the servers. In
some cases a software switch can be flipped, but more frequently, a separate
JAR needs to be deployed on the hardware to open up its capabilities.

– Extension Pattern B: Coordinating Server Extension - In the case
of coordinating servers, the patterns and technologies used are similar to
that of Pattern A. In many cases, however, this feature is provided and
switched on automatically. It is interesting to see that for Pattern A the
technologies used are technologically close to the device (i.e., JARs for Java
servers, DLLs for Windows based servers, etc.) whereas for Pattern B more
abstract technologies are used, such as SOAP and REST.

– Extension Pattern C: Federated Server Extension - Federated
servers are powerful mechanisms that can abstractly control heterogeneous
devices in a network. These federated servers are even more frequently used
for extension by customers and partners, as these are able to control all the
customer’s devices. These “servers” also are closer to the end-user. An exam-
ple is the Bring Your Own Device solution, which provides access to different
features in that domain, such as a single-sign on server, an asset manage-
ment solution, and a software repository for mobile devices, also known as
enterprise app stores.

– Extension Pattern D: Advanced User Interface Extension - To
provide access to the different infrastructures in the enterprise, NetComp
supplies different SDKs and even reference implementations for customers
and partners. Examples of such SDKs are the telepresence control SDK for
Android and iOS, enabling the development of apps that allow for initiation,
planning, execution, and termination of telepresence calls. Many of the apps
built by partners are geared towards end-users, even though the SDKs are
typically open and allow for much more.

One extra way of extending NetComp products is through third party plat-
forms and products, such as Outlook, VMWare, OpenStack, Microsoft Lync, etc.
NetComp supplies software that already extends these platforms. It is interesting
to see that as we move up to higher levels of abstraction, more abstract protocols
and technology-agnostic extension mechanisms are found. Whereas at the lowest
level controls are typically built in highly technologically native environments
(Java SDKs, linux libraries, etc.), at the higher levels mechanisms become in-
creasingly abstract (REST, SOAP). This is in part caused by the time at which
these higher level abstractions were built, but also because more partners require
different types of technologies for integration at higher levels.

5 Illustrative Case: the Telepresence Product Line

One of NetComp’s most successful product lines is the telepresence. NetComp
manufactures many different systems for this domain: from HD television mounted



10 Slinger Jansen

Table 2. The observed extension patterns, their occurrences (in a total of 21 extendible
components), and the observed technologies at NetComp. Please note that for some
product lines multiple extension patterns are observed. In Section 5 all four are observed
in one product line.

Occur. Extension mechanism Extension technol-
ogy

Pattern A:
6

1. Turn on software switch Standalone executable,
JARs, .so libraries,
powershell libs, DLLs

Simple Server Extension
2. Deploy server on device
3. Deploy server on another device

Pattern B:
3

1. Turn on software switch
Standalone executable,
JARs, SOAP, RESTCoordinating Server Extension

2. Deploy server on device
3. Deploy server on another device

Pattern C:
4

1. Deploy server on another device Standalone executable,
JARs, SOAP, REST,
SNMP, Python

Federated Server Extension 2. Buy secondary dedicated device

Pattern D:
8

1. SDKs for (mobile) apps
Android, iOS, OCXAdv. User Interface Extension 2. Provide client controls

cameras to smart microphone and speaker interfaces. These systems are most
effective when they integrate well with the infrastructure of a customer organi-
zation. Meetings must be planned through office applications such as Outlook,
for instance.

Traditionally, managers of telepresence systems performed their operation
and maintenance tasks through the NetComp Service Management Center (SMC),
a server that is dedicated to the detection and management of telepresence de-
vices. The SMC can directly access features of the telepresence devices and
execute device-specific commands, such as start, stop, and record commands.

As customers started developing their systems, however, they also attempt
to integrate other NetComp (generic IP cameras) and third party hardware (HD
videoconferencing). NetComp added a component to their SMC called the Con-
verged Gateway: a product that enables interaction through a unified interface
with other (sometimes non-telepresence) devices.

In the scope of the FloodGate initiative, the capabilities of the devices, the
SMC, and the converged gateway are opened up for extension by third parties.
This is done through the FloodGate server, which is independently deployed in
the IP network. The FloodGate server can be approached directly with SOAP
calls. Furthermore, there are JAR libraries available to quick start third parties
with the development of the advanced choreographies that are necessary to ne-
gotiate advanced telepresence scenarios. The JARs available concern mostly the
SMC, but also contain more high-level abstractions, with the most interesting
one being the eHealth JAR, containing specific capabilities for remote health
care.

The network deployment of the telepresence components is modeled in Fig-
ure 3. Extenders have the option to approach the FloodGate server through the
SDK or through its direct API, using SOAP. There exists a link between the
FloodGate server and endpoint telepresence devices in the network, but this is
no longer documented, as extenders are advised to use the SMC interface. It is
interesting to observe that the extension patterns identified in Section 4 are all



Opening Interfaces Within a Product Portfolio 11

found in the telepresence product line. First, the simple server extension
pattern is found in the fact that it used to be possible to directly address
endpoint devices in the telepresence deployment. Secondly, the coordinating
server extension pattern is found in the SMC extension possibilities. The
SMC controls the whole deployment of telepresence devices and through its
FloodGate interface can be controlled by a third party application. Thirdly,
the federated server extension pattern is found in the converged gate-
way, enabling hardware from others and non-telepresence devices, such as simple
IP cameras, to also be controlled by third parties. It must be mentioned that
the converged gateway and SMC are no longer deployed separately and are al-
ways deployed together. At the highest level we observe the advanced user
interface extension pattern, as the JARs provided give third parties the
opportunity to quick start the development process and develop domain specific
solutions, like the telemedicine library offered.

FloodGate 
Server

Converged 
Gateway 
Interface

SMC 
Interface

Device 
Interface

Third Party 
Product

FloodGate 
SDK (JAR)

Fourth Party 
Product

SOAP

SOAP

HTTPS/JSON

IP NetworkSMC
SOAP

Converged Gateway

Non-Telepresence 
NetComp Hardware and 
Hardware from Others

SOAP

NetComp Telepresence Hardware

Any protocol

Fig. 3. A typical telepresence network deployment and its extension possibilities. The
dotted line indicates that it is still possible to address telepresence devices directly, but
it is no longer supported or documented. Lines without a label indicate proprietary
protocols that are not visible to third parties.

6 Openness and Architecture Challenges

The FloodGate Department initiative is generally experienced positively by the
product departments. Product units get to focus on their product innovations,
while extensibility questions and partner support are delegated to the FloodGate
Department. Furthermore, as the FloodGate Department has strategic support
in the organization, much needed resources in the product units can be used for
“regular” product innovation. The centralized approach results into (architec-
tural) challenges that are experienced across different product units.



12 Slinger Jansen

How open is open enough? There is a constant discussion between part-
ners and NetComp about how open products are. For example, there is a rich
tool suite for unified communications, that provides features such as instant
messaging, document sharing, voice chat, video chat, and screen sharing. The
tool suite is packaged into an extendible client. Partners are calling for modu-
larization, as they do not wish to use the client, but embed smaller features in
their own tooling, such as mobile applications. NetComp needs to strategically
evaluate such requests: is the call for such modularization going to add value for
customers? Will security be compromised? And can profit still be made when
partners can replace components so easily? These decisions are typically made
by the product lines, with support from the FloodGate department.

How must documentation be standardized for partners? One of the
biggest challenges for NetComp has been to standardize across the product units.
When looking at the documentation for 3rd parties, for instance, some of the
documents are supplied in .chm format (a documentation format that is specific
to Microsoft) whereas other documents are supplied through online web con-
tent management systems, and as Word documents. Furthermore, the look and
feel of the documentation is different across different products and sometimes
even for different documents (Java documentation versus C++ documentation,
in one instance) about the same product. An improvement initiative has been
undertaken to bring all documentation to the web.

How must error messages be handled, communicated, and sup-
ported for partners? One of the more interesting discussions at NetComp
is about error messages. As we were discussing the quality, findability, and
reproducibility of the error messages, it was quickly uncovered that there are
actually two different classes of error message: those that come from the Flood-
Gate Components and those that are generated by the products. The FloodGate
Department is responsible for the error messages generated by the FloodGate
Components, whereas the product units are responsible for the error messages
that are generated by these lower layers. The FloodGate Department is running
into problems with these: partners call with questions about product error mes-
sages, whereas they are only capable of answering questions in regards to the
FloodGate Components and their error messages. The FloodGate Department
needs a mandate to force product units to regularly update error message doc-
umentation and improve them where necessary. Simultaneously, the FloodGate
Department is responsible for providing the product units with an infrastructure
in which they can publish their error messages and documentation.

How must crashes propagate through the systems? When one of
the products crashes, the FloodGate Components, typically a separate server,
keeps running. The product units have not been instructed on how to inform
the FloodGate Components about crashes and the like. Partners are expected
to solve this problem themselves. Should a product crash, it simply becomes
unavailable to the FloodGate Components.

How must extensions be secured? In the communications industry secu-
rity is a major concern. The FloodGate Department architects are responsible for



Opening Interfaces Within a Product Portfolio 13

executing and checking security guidelines. These guidelines are well documented
and well managed in NetComp. The architects have three levels of security check
in place, which we cannot share for reasons of confidentiality. However, we are
allowed to illustrate some of the guidelines that are used by the architects. At
the first level, the architects look at data leaks, unlawful interception, and pri-
vacy protection. At the second level, the architects have more advanced steps,
like data encryption, attack and integrity protection, and log auditing. At the
third level, the architects apply tools like virus protection, security hardening,
protected installations, database hardening, and some guidelines for partners on
security. An interesting observation is that NetComp presently shares little of
this knowledge with partners, whereas partners can greatly benefit from security
audits. There are many ecosystem opportunities here: partners can be audited,
certified, and trained in the domain of security. NetComp is evaluating these
different options presently.

How must partners be convinced to deploy newer versions? As the
hardware running for customers is generally deployed and then left alone, so
are the FloodGate Components. This results in situations where the Flood-
Gate Components running on extendible hardware is running far behind the
most recent version, making it harder to develop against. It is, however, a chal-
lenge to convince partners to update the software running on the hardware and
its accompanying FloodGate servers without any business incentive. Simultane-
ously, however, when a customer wishes to acquire extended features through a
NetComp partner, all hardware drivers must first be brought up to date. The
FloodGate Department is working on a policy to incentivize partners to upgrade
software, even when there is no direct need for the partner to do so.

7 Analysis, Discussion, and Related Work

The FloodGate Department is relatively new: many product lines developed
similar interfaces before the FloodGate Department was implemented in full. It
is impossible to say whether the extension patterns were implemented indepen-
dently by the product units, although we have good reason to believe this to
be the case. It is even more interesting then, that such similar patterns evolved.
Parallels must be drawn to other systems for further research, but for now we ob-
serve a common theme in software architecture: with the growth and expansion
of systems and offerings, so do the abstractions on top of them.

As the challenges are unfolded in this paper, one could even wonder what the
advantages are of having one large ecosystem initiative for all different product
lines. After all, there are so many challenges, that it may feel like trying to trap all
the different animals on earth unwillingly onto an ark. However, the participants
in the initiative indicate that their expertise at this point is unparalleled in the
company and that none of the product units would have the resources available to
undertake the initiative at its current speed. Another trend that keeps surfacing
is the “one organization, one ecosystem”: if a large partner extends different



14 Slinger Jansen

products from different product lines, NetComp wants to be aware of this, as
that partner is playing a strategic role in the ecosystem.

In earlier work, we have conducted similar studies. In the work on the ex-
tensibility of mobile operating systems [1] we observed that mobile operating
systems are open and extendible, but that restrictions, rules, and abstraction
layers protect the inner cores of mobile operating systems. This is true for Net-
Comp to a lesser extent: partners are expected to be ‘more responsible’ than
mobile app developers. Also, as there are simply fewer extending partners than
there are mobile app developers, NetComp does not have the resources to test
and harden every interface, albeit with an exception for security aspects.

In the work on pragmatic reuse [4,5] in start-up companies, we observed eight
different pragmatic extension patterns. The pragmatism is found, for instance,
in the fact that these start-ups would sometimes simply hack the database of
another product and read and write to it directly to extend it. None of this
pragmatism is found in the extension mechanisms provided by NetComp: the
extension mechanisms used most are traditional SDKs that communicate with
independent “service providers”, typically running on the hardware itself. As
NetComp is active in the communications industry, this is not surprising: hard-
ware deployments need to be easy to extend, loosely coupled, quick to deploy,
easy to manage, and above all secure.

In the work of Kabbedijk [8] he presents a multitude of patterns that enable
variability in multi-tenant environments. The pattern catalog created there is an
inspiration for the current work on extensible software platforms. In the future
we hope to create a similar overview to provide insight into the most common
patterns used to enable and support software ecosystems.

Wnuk et al. present several case reports about Axis [12, 13], a company
that is equally dependent on hardware as NetComp, but where the ecosystem
initiative is currently less mature. Parallels that can be drawn are the need for
standardization from partners, the need for partners to be informed regularly
about platform developments, and the actual response to change requests from
partners. Finally, Axis too is having difficulty opening up the platform for several
different products, although this is not further specified in the case reports.

A large body of work is available on software product lines. Although seem-
ingly this work focuses on product lines, the real contribution lies in the view
on a coordinated effort in opening up products in several product lines. In that
sense this work is close to product lines, but perhaps even more about orga-
nizational boundaries surrounding product lines, as for instance illustrated by
Hanssen [3]. Toft also highlights the challenges of central collaboration between
departments in a software product line [11]. Contrary to this work, they propose
a decentralized mode of working, that forces departments to collaboratively share
architecture and components.



Opening Interfaces Within a Product Portfolio 15

8 Conclusion

The paper provides four contributions. First, four patterns are provided that
illustrate typical scenarios for opening up a portfolio of hardware-based software
products, with the goal of creating extendible software platforms. The four pat-
terns are Simple Server Extension, Coordinating Server Extension,
Federated Server Extension, and Advanced UI Extension. We provide
a background on the history of the creation of the four patterns to illustrate
their history and use. Secondly, the (architecture) challenges of doing so in a
large company like NetComp, in a centralized fashion, are highlighted and pro-
vide interesting insights and challenges. The insights presented illustrate the ad-
vantages of centrally coordinating platformization and ecosystem efforts and the
division of responsibilities in an organization that has a large product portfolio.
Thirdly, several challenges of launching a platform around a hardware and soft-
ware product portfolio are presented: how to open up different systems, how to
document their extendible interfaces, how product and extension error messages
must be propagated through the systems and organization, how crashes must
be handled, and how extendible interfaces must be secured without becoming
useless.

The FloodGate Department still has a large amount of work in front of
it. Although the architectures are now ready for extension, the management
of the ecosystem and the coordination practices of partners are still immature
and varying across product departments. Secondly, the FloodGate Department
would like to unify the code bases as much as possible, which is introducing
an interesting architectural challenge of supporting different technologies, while
keeping all in one code base and collection of software artifacts.

On the academic side, there are challenges as well. First, we plan to create a
collection of platform extensibility patterns, i.e., patterns that aim to enable the
creation of an ecosystem around a product, similar to our work in multi-tenant
patterns [9]. Secondly, we are working on a software ecosystem management ma-
turity matrix (SEM3) that enables companies to evaluate their ecosystem man-
agement practices and advance them based on a set of strategic requirements,
based on our earlier work [7].

References

1. Mohsen Anvaari and Slinger Jansen. Evaluating architectural openness in mobile
software platforms. In Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, pages 85–92. ACM, 2010.

2. M. Goeminne and T. Mens. A framework for analysing and visualising open source
software ecosystems. Proceedings of IWPSE-EVOL, pages 42–47, 2010.

3. Geir Kjetil Hanssen. Opening up software product line engineering. In Proceedings
of the 2010 ICSE Workshop on Product Line Approaches in Software Engineering,
pages 1–7. ACM, 2010.

4. Slinger Jansen, Sjaak Brinkkemper, and Anthony Finkelstein. Component assem-
bly mechanisms and relationship intimacy in a software supply network. In 15th



16 Slinger Jansen

International Annual EurOMA Conference, Special Interest Session on Software
Supply Chains, 2008.

5. Slinger Jansen, Sjaak Brinkkemper, Ivo Hunink, and Cetin Demir. Pragmatic and
opportunistic reuse in innovative start-up companies. Software, IEEE, 25(6):42–49,
2008.

6. Slinger Jansen, Sjaak Brinkkemper, Jurriaan Souer, and Lutzen Luinenburg.
Shades of gray: Opening up a software producing organization with the open soft-
ware enterprise model. Journal of Systems and Software, 85(7):1495–1510, 2012.

7. Slinger Jansen, Michael A Cusumano, and Sjaak Brinkkemper. Software Ecosys-
tems: Analyzing and Managing Business Networks in the Software Industry. Ed-
ward Elgar Publishing, 2013.

8. Jaap Kabbedijk. Variability in Multi-Tenant Enterprise Software. Utrecht Univer-
sity, Department of Information and Computing Sciences, 2014.

9. Jaap Kabbedijk, Tomas Salfischberger, and Slinger Jansen. Comparing two archi-
tectural patterns for dynamically adapting functionality in online software prod-
ucts. In PATTERNS 2013, The Fifth International Conferences on Pervasive Pat-
terns and Applications, pages 20–25, 2013.

10. Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems–a system-
atic literature review. Journal of Systems and Software, 86(5):1294–1306, 2013.

11. Peter Toft, Derek Coleman, and Joni Ohta. A cooperative model for cross-
divisional product development for a software product line. In Software Product
Lines, pages 111–132. Springer, 2000.

12. Krzysztof Wnuk, Konstantinos Manikas, Per Runeson, Matilda Lantz, Oskar Wei-
jden, and Hussan Munir. Evaluating the governance model of hardware-dependent
software ecosystems–a case study of the axis ecosystem. In Software Business.
Towards Continuous Value Delivery, pages 212–226. Springer, 2014.

13. Krzysztof Wnuk, Per Runeson, Matilda Lantz, and Oskar Weijden. Bridges and
barriers to hardware-dependent software ecosystem participation–a case study. In-
formation and Software Technology, 56(11):1493–1507, 2014.


